Introduction to Distributed Systems

 Practice Issue: Process Communication

* Conceptual Issue: Local and Global Clocks

Absence of Global Clock

Problem: synchronizing the activities of different
part of the system

What about using a single shared clock?

— two different processes can see the clock at different
times due to unpredictable transmission delays

What about using radio synchronized clocks?
— Propagation delays are unpredictable

Software approaches
— Clock synchronization algorithms
— Logical clocks

Cristian's Algorithm

* Basic idea: get the current time from a time server.

e [ssues:

— Error due to communication delay - can be estimated as (7,-7-1)/2
— Time correction on client must be gradual

Both Tgand Ty are measured with the same clock

Client

Request

Time server -------—-—-—-—-——--

|, Interrupt handling time

The Berkeley Algorithm

Time daemon

3:00 ¥ 3:00 3:05

‘j:OO ?0 A—t5
LOF LJOF LeF

3:00 +25 -20

ﬁ Network l > f 1
O] 1] K| D] K5
2:50 3:25 2:50 3:25 3:05 3:05

a)
b)

c)

() (b)

The time daemon asks all the other machines for their clock values
The machines answer

The time daemon tells everyone how to adjust their clock

Logical clocks

* The need to order events in a distributed system
has motivated schemes for “logical clocks”™

* These artificial clocks provide some but not all of
the functionality of a real global clock

* They build a clock abstraction based on
underlying physical events of the system

“Happens-before” relation:
definitions

« “Happens-before” relation (—):

— a — b if a and b are in the same process and a occurred before
b

— a — b 1f a 1s the event of sending a message and b 1s the event
of receiving the same message by another process

— ifa — b and b — c then a — c, i.e. the relation “—" is
transitive

* The happens-before relation 1s a way of ordering
events based on the behavior of the underlying
computation

“Happens-before” relation:
definitions (2)

Two distinct events a and b are said to be concurrent (a || b) 1f

and a7§b

- d

For any two events in the system, eithera — b,b —aoral| b

Example:

e |l ey

€)™ €13, €3> €y

Global Time

Lamport’s Logical Clocks:
definitions

* A logical clock C; at each process P, 1s a function that
assigns a number C(a) to any event a, called
timestamp

— timestamps are monotonically increasing values

— example: C(a) could be implemented as a counter

 We want to build a logical clock C(a) such that:
if a — b then C(a) < C(b)

Lamport’s Logical Clocks:
implementation

» If we want a logical clock C(a) to satisfy:
if a — b then C(a) < C(b)
the following conditions must be met:

— 1f a and b are in the same process and a occurred
before b, then C(a) < C(b)

— 1f a 1s the event of sending a message in process P;
and b 1s the event of rece1rving the same message by

process P;then C(a) < C(b)

Lamport’s Logical Clocks:
implementation (2)

 Two implementation rules that satisfy the previous
correctness conditions are:

— clock C; 1s incremented by d at each event in process P;.
C..=C,+d (d >0)
— 1f event a 1s the sending of a message m by process P,, then
* message m 1s assigned the timestamp ¢, = C(a) (C(a) 1s
obtained after applying previous rule).
* upon receiving message m, process P; sets its clock to:
C;:=max(C;, t,) +d (d >0)

Lamport’s Logical Clocks: example

 Fill the blanks ...

€1 €12 €13 €4 €15 €14 €17
P, ® ® ® ®
() () () ()) O @
) () ()))
P, ® o—eo
€5, €22 €53 €24 €25

Global Time

Lamport’s Logical Clocks: example

€11 €2 €13 €y €15 €14 €7
® P
(3) 4)

(3) (6) (7

p, — @ §y
2 €5, € €53 €4 €5

Global Time

v

