
Introduction to Distributed Systems

•  Practice Issue: Process Communication

•  Conceptual Issue: Local and Global Clocks

Absence of Global Clock

•  Problem: synchronizing the activities of different
part of the system

•  What about using a single shared clock?

–  two different processes can see the clock at different
times due to unpredictable transmission delays

•  What about using radio synchronized clocks?

–  Propagation delays are unpredictable

•  Software approaches

–  Clock synchronization algorithms

–  Logical clocks

Cristian's Algorithm

•  Basic idea: get the current time from a time server.

•  Issues:
–  Error due to communication delay - can be estimated as (T1-T0-I)/2

–  Time correction on client must be gradual

The Berkeley Algorithm

a)  The time daemon asks all the other machines for their clock values

b)  The machines answer

c)  The time daemon tells everyone how to adjust their clock

Logical clocks

•  The need to order events in a distributed system

has motivated schemes for “logical clocks”

•  These artificial clocks provide some but not all of

the functionality of a real global clock

•  They build a clock abstraction based on

underlying physical events of the system

“Happens-before” relation:

definitions

•  “Happens-before” relation (→):
–  a → b if a and b are in the same process and a occurred before

b

–  a → b if a is the event of sending a message and b is the event

of receiving the same message by another process

–  if a → b and b → c then a → c, i.e. the relation “→” is

transitive

•  The happens-before relation is a way of ordering

events based on the behavior of the underlying

computation

“Happens-before” relation:

definitions (2)

•  Two distinct events a and b are said to be concurrent (a || b) if
and

•  For any two events in the system, either a → b, b → a or a || b

•  Example:

ba→/ ab→/

P1

P2

e11 e12 e13 e14

e21
e22 e23 e24

Global Time

e22 → e13 , e13 → e14

thus e22 → e14

e11 || e21

Lamport’s Logical Clocks:

definitions

•  A logical clock Ci at each process Pi is a function that

assigns a number Ci(a) to any event a, called

timestamp

–  timestamps are monotonically increasing values

–  example: Ci(a) could be implemented as a counter

•  We want to build a logical clock C(a) such that:

 if a → b then C(a) < C(b)

Lamport’s Logical Clocks:

implementation

•  If we want a logical clock C(a) to satisfy:

 if a → b then C(a) < C(b)

the following conditions must be met:

–  if a and b are in the same process and a occurred

before b, then Ci(a) < Ci(b)

–  if a is the event of sending a message in process Pi

and b is the event of receiving the same message by

process Pj then Ci(a) < Cj(b)

Lamport’s Logical Clocks:

implementation (2)

•  Two implementation rules that satisfy the previous

correctness conditions are:

–  clock Ci is incremented by d at each event in process Pi:

 Ci := Ci + d (d > 0)

–  if event a is the sending of a message m by process Pi, then

•  message m is assigned the timestamp tm = Ci(a) (Ci(a) is

obtained after applying previous rule).

•  upon receiving message m, process Pj sets its clock to:

 Cj := max(Cj , tm) + d (d > 0)

e23
e24

Lamport’s Logical Clocks: example

•  Fill the blanks …

P1

P2

e11 e12 e13 e14

e21
e22

Global Time

e15 e16
e17

e25

() () () () () () ()

() () () () ()

e23
e24

Lamport’s Logical Clocks: example

P1

P2

e11 e12 e13 e14

e21
e22

Global Time

e15 e16
e17

e25

(1) (3) (2) (4) (5) (7) (6)

(1) (3) (2) (4) (7)

