
Announcements

•  HW2 is on Canvas

–  Due date: Friday, Oct. 21

•  Exam I

–  Wednesday, Oct. 12

–  In class

Lamport’s Algorithm

•  Assumption: messages delivered in FIFO order
(no loss messages)

•  Requesting the CS
–  Pi sends message REQUEST(t

i
, i) to other processes, then

enqueues the request in its own request_queuei

–  when Pj receives a request from Pi, it returns a timestamped
REPLY to Pi and places the request in request_queuej

–  request_queue is ordered according to (t
i
, i)

•  A process Pi executes the CS only when:
–  Pi has received a message with timestamp larger than ti from

all other processes

–  its own request in the first of the request_queuei

Lamport’s Algorithm (2)

•  Releasing the critical section:

–  when done, a process remove its request from the queue and sends a

timestamped RELEASE message to all

–  upon receiving a RELEASE message from Pi, a process removes

Pi’s request from the request queue

Lamport’s Algorithm Example
(2,1)

(1,2)

P1

P2

P3

P1

P2

P3

(1,2) (2,1)

(1,2) (2,1)

(1,2) (2,1)

(1,2)

(2,1)

(2,1)

(2,1)

P2 enters CS

P2 leaves CS

P1 enters CS

Lamport’s: proof of correctness

•  Proof by contradiction:

–  assume Pi and Pj are executing the CS at the same time

–  assume request timestamp (t
i
, i) of Pi is smaller than that of Pj

–  this means both Pi and Pj have their request at the top of the queue

–  FIFO channels + second assumption + Pj executing => request
from Pi must be in request_queuej

–  contradiction: Pi request in request_queuej and not at the top of the
queue, however we said timestamp(Pi) < timestamp(Pj) …

•  Therefore it cannot be that Pi and Pj are executing the CS
at the same time!

About Lamport’s Algorithms

•  Why FIFO?

•  Why Message, not Response?

•  Lossy channels work?

•  How many messages passed for one CS

execution?

–  Can we improve it?

Ricart-Agrawala Algorithm

•  Optimization of Lamport’s algorithm:

Lamport’s Algorithm

Requesting the CS
- Pi sends message REQUEST(t

i
, i) +

 enqueues the request in request_queuei

- when Pi receives a request from Pj, it

enqueues it and returns a REPLY to Pj

Pi executes the CS only when:
- has received a msg with timestamp > ti from everybody

- its own request is the first in the request_queuei

Releasing the CS:
- when done, a process remove its request from the queue +

sends a timestamped RELEASE msg. to everybody else

- upon receiving a RELEASE message from Pi, a process

removes Pi’s request from its request queue

Ricart-Agrawala Algorithm

Requesting the CS
- Pi sends message REQUEST(t

i
, i)

- when Pi receives a request from Pj, it returns a REPLY to

Pj if it is not requesting or executing the CS, or if it made a

request but with a larger timestamp. Otherwise,

the request is deferred.

Pi executes the CS only when:
- has received a REPLY from everybody

Releasing the CS:
- when done, a process sends a REPLY to all deferred

requests

Ricart-Agrawala Algorithm Example

P2 enters CS

(2,1)

P1

P2

P3

(2,1)

P2 leaves CS

P1 enters CS

P1

P2

P3

Ricart-Agrawala: proof of

correctness

•  Proof by contradiction:

–  assume Pi and Pj are executing the CS at the same time

–  assume request timestamp of Pi is smaller than that of Pj

–  this means Pi issued its own request first and then received Pj‘s
request, otherwise Pj request timestamp would be smaller

–  for Pi and Pj to execute the CS concurrently means Pi sent a
REPLY to Pj before exiting the CS

–  Contradiction: a process is not allowed to send a REPLY if the
timestamp of its request is smaller than the incoming one

•  Therefore it cannot be that Pi and Pj are executing the
CS at the same time!

