Announcements

« HW?2 1s on Canvas
— Due date: Friday, Oct. 21

e Exam I

— Wednesday, Oct. 12
— In class

Lamport’ s Algorithm

* Assumption: messages delivered in FIFO order
(no loss messages)

* Requesting the CS

— P, sends message REQUEST(#, 7) to other processes, then
enqueues the request in its own request _queue,

— when P;receives a request from P, it returns a timestamped
REPLY to P, and places the request in request_queue;

J
— request_queue 1s ordered according to (z;, i)

* A process P, executes the CS only when:

— P, has received a message with timestamp larger than ¢, from
all other processes

— 1ts own request in the first of the request queue,

Lamport’ s Algorithm (2)

» Releasing the critical section:

— when done, a process remove its request from the queue and sends a
timestamped RELEASE message to all

— upon receiving a RELEASE message from P, a process removes
P.s request from the request queue

l

Lamport’ s Algorithm Example

(2,1) P, enters CS
1,
P (;a/ \¥\\ > (172) (291)
2 \ P] - /' 4 »
P \ , % [(.2)]2.D)]
< . >
[P \ "
P; : g
(1,2))2,1)
P, leaves CS
2.1)

2,1)

»
>

[@.D)]

Lamport’ s: proof of correctness

* Proof by contradiction:
— assume P; and P; are executing the CS at the same time
— assume request timestamp (#;, i) of P; is smaller than that of P,
— this means both P; and P; have their request at the top of the queue

— FIFO channels + second assumption + P; executing => request
from P; must be in request_queue;

— contradiction: P; request in request_queue; and not at the top of the
queue, however we said timestamp(P;) < timestamp(P;) ...
» Therefore it cannot be that P; and P; are executing the CS
at the same time!

About Lamport’s Algorithms

Why FIFO?
Why Message, not Response?
Lossy channels work?

How many messages passed for one CS
execution?

— Can we improve it?

Ricart-Agrawala Algorithm

e Optimization of Lamport’ s algorithm:

Lamport’ s Algorithm

Requesting the CS
- P, sends message REQUEST(¢,, i) +
enqueues the request in request _queue;
- when P;receives a request from P, it
enqueues it and returns a REPLY to P;

P, executes the CS only when:
- has received a msg with timestamp > ¢, from everybody
- its own request is the first in the request_queue,

Releasing the CS:
- when done, a process remove its request from the queue +
sends a timestamped RELEASE msg. to everybody else
- upon receiving a RELEASE message from P, a process
removes P, s request from its request queue

Ricart-Agrawala Algorithm

Requesting the CS
- P, sends message REQUEST(¢,, i)
- when P, receives a request from P] it returns a REPLY to
P, if it is not requesting or executing the CS, or if it made a
request but with a larger timestamp. Otherwise,

the request is deferred.

P, executes the CS only when:
- has received a REPLY from everybody

Releasing the CS:
- when done, a process sends a REPLY to all deferred
requests

Ricart-Agrawala Algorithm Example

P, leaves CS

v

v

v

Ricart-Agrawala: proof of
correctness

* Proof by contradiction:

— assume P; and P, are executing the CS at the same time
— assume request timestamp of P; 1s smaller than that of P,

— this means P; issued its own request first and then received P;'s
request, otherwise P; request timestamp would be smaller

— for P, and P; to execute the CS concurrently means P, sent a
REPLY to P before exiting the CS

— Contradlctlon a process 1s not allowed to send a REPLY i1f the
timestamp of its request 1s smaller than the incoming one

* Therefore it cannot be that P, and P, are executing the
CS at the same time!

