
Announcements 

•  HW2 is on Canvas 

–  Due date: Friday, Oct. 21 

•  Exam I 

–  Wednesday, Oct. 12 

–  In class 



Lamport’s Algorithm 

•  Assumption: messages delivered in FIFO order 
(no loss messages) 

•  Requesting the CS 
–  Pi sends message REQUEST(t

i
, i) to other processes, then 

enqueues the request in its own request_queuei   

–  when Pj receives a request from Pi, it returns a timestamped 
REPLY to Pi and places the request in request_queuej  

–  request_queue is ordered according to (t
i
, i) 

•  A process Pi executes the CS only when:   
–  Pi has received a message with timestamp larger than ti from 

all other processes 

–  its own request in the first of the request_queuei  



Lamport’s Algorithm (2) 

•  Releasing the critical section: 

–  when done, a process remove its request from the queue and sends a 

timestamped RELEASE message to all 

–  upon receiving a RELEASE message from Pi, a process removes 

Pi’s request from the request queue 
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Lamport’s: proof of correctness  

•  Proof by contradiction: 

–  assume Pi and Pj are executing the CS at the same time 

–  assume request timestamp (t
i
, i) of Pi is smaller than that of Pj 

–  this means both Pi and Pj have their request at the top of the queue 

–  FIFO channels + second assumption + Pj executing => request 
from Pi must be in request_queuej 

–  contradiction: Pi request in request_queuej and not at the top of the 
queue, however we said timestamp(Pi ) < timestamp(Pj ) … 

•  Therefore it cannot be that Pi and Pj are executing the CS 
at the same time! 



About Lamport’s Algorithms 

•  Why FIFO? 

•  Why Message, not Response? 

•  Lossy channels work? 

•  How many messages passed for one CS 

execution? 

–  Can we improve it? 



Ricart-Agrawala Algorithm 

•  Optimization of Lamport’s algorithm: 

Lamport’s Algorithm 

 

Requesting the CS 
- Pi sends message REQUEST(t

i
, i) + 

   enqueues the request in request_queuei   

- when Pi receives a request from Pj, it  

enqueues  it and returns a REPLY to Pj 

 

 

Pi executes the CS only when:   
- has received a msg with timestamp >  ti from everybody 

- its own request is the first in the request_queuei 

 

Releasing the CS: 
- when done, a process remove its request from the queue + 

sends a timestamped RELEASE msg. to everybody else 

- upon receiving a RELEASE message from Pi, a process  

removes Pi’s request from its request queue 

Ricart-Agrawala Algorithm 

 

Requesting the CS 
- Pi sends message REQUEST(t

i
, i)  

- when Pi receives a request from Pj, it  returns a REPLY to 

Pj if it is not requesting or executing the CS, or if it made a 

request but with a larger timestamp. Otherwise, 

the request is deferred. 

 

Pi executes the CS only when:   
- has received a REPLY from everybody 

 

 

Releasing the CS: 
- when done, a process sends a REPLY to all deferred 

requests 



Ricart-Agrawala Algorithm Example 
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Ricart-Agrawala: proof of 

correctness 

•  Proof by contradiction: 

–  assume Pi and Pj are executing the CS at the same time 

–  assume request timestamp of Pi is smaller than that of Pj 

–  this means Pi issued its own request first and then received Pj‘s 
request, otherwise Pj request timestamp would be smaller 

–  for Pi and Pj to execute the CS  concurrently means Pi sent a 
REPLY to Pj before exiting the CS 

–  Contradiction: a process is not allowed to send a REPLY if the 
timestamp of its request is smaller than the incoming one 

•  Therefore it cannot be that Pi and Pj are executing the 
CS at the same time! 


